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Abstract. In this paper computer simulation results of higher-order density correlations for
cellular automaton models of traffic flow are presented. The examinations show the jamming
transition as a function of both the density and the magnitude of noise and allow one to calculate
the velocity of upstream moving jams. This velocity is independent of the density and decreases
with growing noise. The point of maximum flow in the fundamental diagram determines its value.
For that it is not necessary to explicitly define jams in the language of the selected model, but only
based upon the well defined characteristic density profiles along the line.

1. Introduction

Recently, the examination and modelling of vehicular traffic has become an important subject
of research—see [1–5] and references therein for a brief review. In the microscopic approach to
the traffic flow problem, the cellular automaton introduced in [6] reproduces important entities
of real traffic, like the flow–density relation or stop-and-go waves. Beside the realization
of some basic requirements to such a model it can be efficiently used in computational
investigations and applications [7–10]. Fundamental analytical and numerical examinations
enclose exact solutions for certain limits and mean-field approximations [11]: the jamming
transition [12–17] or the effects of perturbations and the occurrence of metastable states
[18–20], for example.

We investigate the density waves and the separation in free-flow and dense regions by
means of the density-autocorrelation function. It enables us to trace back the spatio-temporal
evolution of jams which are stable during the measurement time, on condition that jams emerge.
It should be noted that the probability for a jam to survive decreases with the simulation
time [21] in a system without a clear phase separation between congestion and free flow.
However, the duration of a simulation is sufficiently shorter than these time periods. By this
method it is superfluous to give an explicit definition of what a jam is and which cars are
belonging to the jam. Therefore, this method can be theoretically used for every traffic flow
model where density profiles are available. As an example, we apply this method to cellular
automaton models. In this context we report and discuss several aspects of the underlying
model and their slow-to-start modifications (section 2): the jamming transition shows up by
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varying both the global densityρ and the global noisep; the jam velocity can be derived
directly from the density-autocorrelation function and is closely related to the global flow–
density relation (section 3). It is not the goal of this paper to discuss the jamming transition
with regard to the criticality or the sharpness of this issue, but we apply the correlation function
method from a more practical point of view.

2. The model

Within the framework of this paper we only consider a one-dimensional ring of cells. The
cells are either vacant or occupied by a vehicle labelledi. Its position isxi and its discrete
velocity isvi ∈ [0, vmax ]. The gapgi denotes the number of empty sites to its leading vehicle.
The rules for a parallel update are:

• Acceleration with regard to the vehicle ahead:v′i ← min(vi + 1, gi, vmax),
• Noise: with a probabilityp dov′′i ← max(v′i − 1, 0),
• Movement:xi ← xi + v′′i .

The investigated systems consist ofL cells andN vehicles, the global density isρ = N/L.
The flow is defined asJ = 〈v〉ρ with the mean velocity〈v〉 =∑ vi/N . In the following the
Nagel–Schreckenberg cellular automaton model [6] defined through the above set of rules is
denoted by SCA.

We extend our studies on further modifications of the SCA, namely on models with slow-
to-start rules. For the model with velocity-dependant randomization (VDR) [19, 20] we set
p̃(vi = 0) = Min(p + pVDR, 1). This leads to a reduced outflow from a jam. Note that
vi is the velocity before the first update step is performed. The other modified model under
consideration is the T2 model introduced by Takayasu and Takayasu [22]. Here the headway,
gi , of a vehiclei controls the acceleration: standing vehicles with a headwaygi = 1 only speed
up with a probability 1− p̃ with p̃ = Min(p + pT 2, 1), whereas for all others the rules are
unchanged. Unlike the SCA with similar parameters, both models exhibit a different behaviour
in the vicinity of the point of maximum flow (ρmax ≡ ρ(Jmax), Jmax). They are capable of
generating metastable states in the adiabatic approach (for details see [20]), i.e. one finds two
branches ofJ (ρ) in a small density interval. Additionally, for sufficiently smallp one can
find a clear separation of the dense and free-flow regions in a space-time plot. We summarize
the effective deceleration probabilities of the applied models:

SCA: p = const.

VDR: p̃ =
{

Min(p + pVDR, 1) vi = 0

p otherwise

T2: p̃ =
{

Min(p + pT 2, 1) vi = 0∧ gi = 1

p otherwise.

(1)

Actually, other definitions of̃p are conceivable, but, for our purpose, we decided to only use the
above notations. Primarily, it was done for modelling moving vehicles with similar properties
and to scan the parameter space by only varyingp. BothpVDR andpT 2 are of any value, but
fixed.

3. Simulation results and their discussion

The density waves are moving upstream and can be easily observed in a space-time plot [6,23]:
one finds separation of the dense and free-flow regions. For the measurements it is necessary
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Figure 1. The peak of the density-autocorrelation function enables one to estimate the jam velocity,
VJ . The standard deviation of the symmetrically assumedCVJ is depicted in the inset. For large
T/1T ratios the variance shrinks a lot, therefore it might occur that the autocorrelation function
vanishes and inhibits the estimation of the dependant quantities. In the vicinity ofρ∗ this sensitivity
is more pronounced (ρ = 0.4).

to introduce the mean local densityρl(k, t) of the cellk at timet :

ρl(k, t) = 1

λ

λ−1∑
i=0

ηk+i (t) (2)

with

ηk+i (t) =
{

1 if sitek + i is occupied at timet

0 otherwise.

The parameterλdenotes the length of the interval on which the local density has to be computed.
It should satisfy the conditionλ0� λ� L [15] with a characteristic length scaleλ0. For the
determination of the jam velocity,VJ , we use the generalizedT -point autocorrelation function
of the density

CV ∗J (r ≡ V ∗J τ1T, τ) =
〈 T−1∏
τ=0

ρl(x + V ∗J τ1T, t + τ1T )

〉
L

(3)

with the supposed jam velocityV ∗J ∈ [−1, 0]. By varyingV ∗J one finds the largestCV ∗J (r, τ )
(figure 1). 1T is the time interval between two single measurements which contributes to
(3). Sufficiently large values of1T are necessary to observe a macroscopic motion and to
determineVJ with adequate accuracy. Unless otherwise mentioned, we setL = 104 and
1T = 102 in order to exclude any finite-size effects. Usually, we average over 20 simulation
runs withvmax = 5 andλ = 30.

As pointed out in figure 1, one has to thoroughly adjust the parametersT and1T . If T is
of the order of magnitude of1T then the uncertainty of the measurement covers the signal of
interest andCVJ vanishes. This problem becomes more serious while approachingρ∗. In this
region the calculations are additionally complicated due to large fluctuations ofCVJ itself.
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Figure 2. The jam velocity as a function ofp, the error bars are within the symbol size (ρ = 0.4).

The jam velocityVJ depends on the deceleration probabilityp (figure 2) and is related
to global quantities as shown later. We checked this for a variety of parameters, but could
not notice any remarkable deviations among the diverse sets of data. The modifications of the
SCA, VDR and T2, yield a different behaviour. The absolute values of the jam velocity in the
VDR and T2 models are smaller than that of the SCA, implying that both modifications are
characterized by a lowered outflow from a jam that, in turn, reduces the jam velocity.

The results of simulations using the VDR are basically shifted towards smaller|VJ |. pVDR
can be recognized on the ordinate atp = 0 and on the abscissa atVJ = 0, for largep a total
deadlock occurs, i.e. it is highly unlikely or even impossible that a stopped car speeds up again.
In order to find out howVJ is related top̃ we investigate the mean waiting timetw for p̃ < 1
expressed through an infinite series:

tw = 1(1− p̃) + 2(1− p̃)p̃ + 3(1− p̃)p̃2 . . . = (1− p̃)
∞∑
n=1

np̃n−1 = 1

1− p̃
⇒ |VJ | = 1

tw
= 1− p̃ ∈ [0, 1− pVDR]

(4)

and is exact forp = 0. For large values ofpVDR one obtains a good agreement, whereas for
smallpVDR the jam velocity is overestimated. This is due to the so-called sub-jams which
emerge downstream from wider jams and cause a reduction of|VJ |.

The results drawn from simulations using the T2 model show no deadlock situation for
anyp < 1. Starting withp = 1, one can hardly distinguish between the simulation results of
SCA and T2. This is especially valid as long aspT 2 > 1− p. Similar to (4) one can estimate

tw = 1(1− p̃) + 2(1− p)p̃ + 3(1− p)p̃p + 4(1− p)p̃p2 . . .

= 1 + p̃
∞∑
n=0

pn = 1− p + p̃

1− p . (5)

Note that for smallpT 2-valuesVJ is overestimated for all values ofp, which, in turn, can be
traced back to the occurrence of sub-jams. With increasingpT 2 even for smallp it is required
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Figure 3. VJ versusρ for p = 0.5. Beyondρ∗, especially for 0.2 6 ρ 6 0.8, VJ (ρ) can be
assumed to be constant. The inset reveals the large fluctuations ofVJ nearρ∗ which are up to the
order of magnitude ofVJ itself.

to setp̃ = 1. Again,|VJ | = t−1
w and two special cases can be described by

|VJ |(p = 0) = 1

1 +pT 2
and |VJ |(pT 2 → 1) = 1− p

2− p . (6)

Obviously, the measurements reveals several density regimes. Belowρ∗ the vehicles move
independently, i.e. there are no correlations between them. Forρ > ρ∗ upstream-moving
density waves can be detected by means of (3). In the vicinity ofρ∗ the jam velocity reveals
large fluctuations (figure 3), which are due to the recurrent emergence and dissipation of jams.
But beyondρ∗, VJ is nearly constant. Within the interval where density waves are to be
expected it is obvious thatVJ is independent ofρ, since the outflow from a jam is independent
of the global density.

So far, we have applied the autocorrelation function (3) to determine the jam velocity.
But this quantity itself indicates the two different phases separated by noisep∗ or densityρ∗

(figures 4 and 5). Varyingp leads to a transition while crossingp∗. Its clarity strongly depends
onT/1T : for insufficient ratios a plateau atC̄VJ (p) occurs. To elucidate it we used a modified
autocorrelation

C̄V ∗J (r, τ ) =
〈( T−1∏

τ=0

ρl(x + V ∗J τ1T, t + τ1T )

)1/T 〉
L

. (7)

The other transition takes place while crossing the densityρ∗ (figure 5). Forρ < ρ∗ one
finds empty regions on the road of the order of magnitude ofλ, and thereforeCVJ completely
vanishes. On the other hand, forρ > ρ∗ stable congestion emerges. The same jam can be
detected atti as well as attf = ti + τ1T located atx(ti) − |VJ |tf . In this context,ρ∗ can
be denoted as the density, at which stable jams emerge and separates the density regime as is
shown in the inset of figure 5. For a fixed density and a varyingvmax (figure 6) the relationship
can be estimated asCVJ (vmax) ∝ ρ. Nevertheless, the quality of these data does not allow a
correct classification of the transition between the free-flow and the dense region. Above all,
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Figure 4. The transition from free flow to congested flow can also be obtained in the behaviour of
the modified autocorrelation function̄CVJ (7) by varyingp (ρ = 0.073). The transition is smeared
out due to finite-size effects and systematic errors in the determination ofC̄VJ .

Figure 5. Plot of the the autocorrelation functionCVJ (ρ)|vmax . Below a signified density the
autocorrelation function vanishes due to the absence of jams. The inset zooms in on the region
ρ ≈ ρ∗ for the modified autocorrelation̄CVJ (7) (p = 0.5).

the sensitive dependences on the many adjustable parameters of this method seem to prevent
a more accurate consideration of the interesting interval of density.

How is the jam velocity related to other macroscopic quantities? In the steady state the
dynamics are characterized by an equilibrium of out-flowing vehicles and vehicles attaching
to the jam from behind. The more frequently vehicles join the jam, the faster the jam moves
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Figure 6. Plot of the the autocorrelation functionCVJ (vmax)|ρ (p = 0.5).

upstream. If we neglect any effects due to metastability then the free-flow region can be
assumed to be located in the vicinity of the point of maximum flow (ρmax, Jmax). Hence, the
velocity of attaching vehicles is〈vatt 〉 = Jmax/ρmax . The mean distance between the upstream
tail of the jam and the next vehicle is〈g〉 = ρ−1

max−1 and the temporal distance therefore reads

1tatt = 〈g〉〈vatt 〉 ⇔ VJ = Jmax

ρmax − 1
6 0. (8)

This is confirmed by the simulation results depicted in figure 7. It means thatVJ is determined
by the slope of the congested branch (ρ > ρmax) in the fundamental diagram. This can also
be verified for the VDR and T2 modifications (figure 8). The small deviations from the data
rest upon a difference between the outflow of the jam and the maximum global flow in the
considered systems, but also in the above-made assumption of the equilibrium. Actually, the
lowered outflow from jams observed in the VDR and T2 models in comparison with the SCA
is also reflected by (8).

Concluding, this knowledge enables a calibration of the SCA. Besides the approach of the
fundamental diagram derived from empirical data, a further point of interest is the velocity of
upstream-moving jams (≈−15 km h−1 on German highways [24])—but according to (8) all the
information is accumulated in the fundamental diagram, namely in the second characteristic
slope ofJ (ρ). For the SCA one can setvmax = 5 andp = 0.2–0.3 to adapt the simulation to
this empirical jam velocity.

4. Summary

We have investigated the cellular automaton model for vehicular traffic in order to get
information about the density waves and their velocity. Beside the standard SCA we also
included two slow-to-start modifications (VDR and T2). Both resemble the SCA except the
rules for standing vehicles. Loosely speaking, they result in a lower flow downstream from
a jam and a clear phase separation for certain density regimes. For the determination of
the jam velocity we used the density-autocorrelation functionCVJ (r, τ ). Despite the high
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Figure 7. The jam velocity can be explained by (8):VJ = Jmax/(ρmax − 1).

Figure 8. VJ (full symbols) as well asJmax/(ρmax−1) (open symbols) are depicted for all models
used. The small deviations are related to the discrepancies between the outflow of a jam and the
global maximum flow.

computational efforts (O(L2)) this method was suitable for application to our calculations.
Moreover, a definition of jams is not necessary and, therefore, the method can be applied to
every model that provides density profiles along the road.

The quantityCVJ (r, τ ) reflects the two different phases and depends on the global density
ρ. The density regime is separated byρ∗. Forρ < ρ∗ no jams can be detected by the applied
method, whereas for largerρ the system is dominated by sequences of dense and free-flow
regions, whereCVJ remains finite and permits one to estimateρ∗. At this point a transition to



Density waves and jamming transition 6525

the congested region takes place. Both the local lengthλ and the number of calculations,T ,
have a large influence onCVJ . Further statements regarding the transition cannot be given due
to the numerical insufficiencies and accuracy.

The jam velocity can be derived directly fromCVJ (r, τ ). For sufficiently largeρ the
absolute value ofVJ is a continuous and descending function ofp, but depends on the model
considered. The differences between the models, especially forp→ 0 andp→ 1, could be
explained by waiting-time arguments. The jam velocity is essentially expressed throughρmax
andJmax , irrespective of the model considered here.
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